Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

An analysis of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathbf{C}-\mathbf{H} \cdots \pi$ interactions in three substituted 4-ketotetrahydroindoles

A. R. Choudhury, ${ }^{\text {a }}$ K. Nagarajan ${ }^{\text {b }}$ and T. N. Guru Row ${ }^{\text {a* }}$

${ }^{\mathrm{a}}$ Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and ${ }^{\text {b }}$ HIKAL India Limited, Bannerghatta Road, Bangalore 560 078, Karnataka, India
Correspondence e-mail: ssctng@sscu.iisc.ernet.in
Received 16 January 2004
Accepted 3 February 2004
Online 28 February 2004
The crystal and molecular structures of the three 4-ketotetrahydroindoles 2-(4-chlorophenyl)-1-(4-fluorophenyl)-6,6-di-methyl-4,5,6,7-tetrahydro-1 H -indol-4-one ($\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{ClFNO}$), (I), 1-(4-fluorophenyl)-2-(4-methoxyphenyl)-6,6-dimethyl-4,5,6,7-tetrahydro- 1 H -indol-4-one $\left(\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{FNO}_{2}\right)$, (II), and 6,6 -di-methyl-1,2-diphenyl-4,5,6,7-tetrahydro- 1 H -indol-4-one $\quad\left(\mathrm{C}_{22}{ }^{-}\right.$ $\mathrm{H}_{21} \mathrm{NO}$), (III), have been determined via single-crystal X-ray diffraction in order to study the intermolecular interactions therein. All three structures are stabilized via intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, generating different molecular motifs.

Comment

The generation of different types of packing motifs in crystalline lattices has been illustrated in detail in the literature. Different types of intermolecular interactions, such as hydrogen bonding (Desiraju, 1989, 2000, 2002; Aakeröy, 1997; Guru Row, 1999; Hunter et al., 2001), C-H $\cdots \pi$ interactions

(I) $R_{1}=\mathrm{F}, R_{2}=\mathrm{Cl}$
(II) $R_{1}=\mathrm{F}, R_{2}=\mathrm{OMe}$
(III) $R_{1}=R_{2}=\mathrm{H}$
(Nishio et al., 1995; Umezawa et al., 1999; Takahashi et al., 2000), $\pi-\pi$ stacking (Hunter, 1993, 1994) and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding (Desiraju \& Steiner, 1999; Steiner, 2002) have been reviewed extensively. Recently, it has been shown that 'organic fluorine' provides similar interactions, generating
packing motifs in the presence or absence of other intermolecular forces (Prasanna \& Guru Row, 2000a,b,c, 2001). We have been interested in the study of the role of organic fluorine in the packing of organic molecules which show biological activity (Choudhury, Urs, Guru Row \& Nagarajan, 2002; Choudhury, Urs, Smith et al., 2002). Against this background, we report here the crystal and molecular structures of 2-(4-chlorophenyl)-1-(4-fluorophenyl)-, (I), and 1-(4-fluoro-phenyl)-2-(4-methoxyphenyl)-6,6-dimethyl-4,5,6,7-tetrahydro1 H -indol-4-one, (II), and compare these with the corresponding unsubstituted compound 6,6-dimethyl-1,2-diphenyl-4,5,6,7-tetrahydro- 1 H -indol-4-one, (III) (Varghese et al., 1986), the structure of which we have redetermined.

Figure 1
A view of the molecule of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.

Figure 2
A packing diagram for (I), showing the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonded dimer and the intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction. $C g 1$ is the centroid of the five-membered $\mathrm{N} 1 / \mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 8 / \mathrm{C} 7$ ring and $C g 2$ is the centroid of the C9-C14 phenyl ring. Atoms labelled with a dollar sign (\$), hash (\#) or asterisk $(*)$ are at symmetry positions $(1-x, 2-y, 1-z),(2-x, 1-y$, $1-z)$ and $(1-x, 1-y, 1-z)$, respectively.

Most unsubstituted 4-ketotetrahydroindoles have been found to be biologically inactive (Remers et al., 1971) and this inactivity was attributed to the extended conjugation of the $\mathrm{C}=\mathrm{O}$ group with the indole N atom (Weiss et al., 1968). In order to delocalize the lone pair of electrons on N and to facilitate the activity of the keto function, a series of 1,2-diaryl derivatives was synthesized (Nagarajan et al., 1985). It was found that differently substituted phenyl groups on the 1- or 2positions facilitate biological activity. Compound (I) of the present study was inactive, whereas (II) showed considerable activity, as reported by Nagarajan et al. (1985). We have redetermined the structure of the unsubstituted compound, (III), since the intermolecular interactions were not discussed in detail in the earlier report of Varghese et al. (1986).

In compound (I), the six-membered ring of the tetrahydroindole system (Fig. 1) has an envelope conformation, with atom C5 a distance of -0.641 (3) \AA from the C3/C4/C6/ C7/C8 plane. Selected torsion angles are given in Table 1. The

Figure 3
A view of the molecule of (II), showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.

Figure 4
A stereoview of the packing of (II), showing the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogenbonded sheet motif and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.
dihedral angle between the 4-fluorophenyl and 4-chlorophenyl rings is $69.84(7)^{\circ}$. The packing of the molecules in the crystal lattice (Fig. 2) is stabilized via $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Table 2). There are two independent $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, which link the molecules in the b direction. Thus, molecules packed around the inversion centres at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ and $\left(1, \frac{1}{2}, \frac{1}{2}\right)$ are linked by pairs of independent $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions about the inversion centre at $\left(\frac{1}{2}, 1, \frac{1}{2}\right)$ then serve to link these chains to form sheets of molecules in the $b c$ plane. It is of interest to note that there are no interactions involving the halogen atoms, though the structure contains Cl as well as F .

In compound (II), the six-membered ring of the tetrahydroindole system (Fig. 3) also has an envelope conformation, with atom C5 a distance of -0.618 (2) \AA from the C3/C4/ C6/C7/C8 plane, similar to what was observed for (I). Selected torsion angles are given in Table 3. The dihedral angle between the 4 -fluorophenyl and 4-methoxyphenyl rings is $60.94(4)^{\circ}$. The molecules pack in the unit cell (Fig. 4) via two different $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 4) in the (101) plane,

Figure 5
A view of the molecule of (III), showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.

Figure 6
A stereoview of the packing of (III), showing the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogenbonded ladder motif and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions
generating a sheet structure. This is further stabilized by an additional $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction, which reinforces the twodimensional sheet (Fig. 4). Once again, it is to be noted that the F atom does not generate any significant interaction.

In compound (III), the six-membered ring of the tetrahydroindole system (Fig. 5) again has an envelope conformation, with atom C5 a distance of -0.632 (2) \AA from the C3/ C4/C6/C7/C8 plane. Selected torsion angles are given in Table 5. The dihedral angle between the phenyl rings is 62.99 (6) ${ }^{\circ}$. The variation in dihedral angles in (I), (II) and (III) clearly shows that the conformations of the molecules are significantly different among the three compounds. The molecules of (III) pack in the unit cell via two different $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Fig. 6 and Table 6), generating a 'ladder' motif which is further reinforced by a $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction involving $\mathrm{C} 4-\mathrm{H} 4 B$ (Table 6). These ladders are then linked to form a two-dimensional sheet in the (101) plane via a further $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction involving $\mathrm{C} 11-\mathrm{H} 11$ and the centroid of the C9-C14 phenyl ring (Cg2) at ($-x, 1-y, 2-z$).

These three structures illustrate the co-existence of C $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions and their ability to generate different packing motifs with altered molecular conformations. Such subtle variations might have a significant impact on the biological activities of such compounds. Indeed, only compound (II) is found to be biologically active.

Experimental

Compounds (I)-(III) were synthesized according to the procedure of Nagarajan et al. (1985). Single crystals suitable for X-ray diffraction studies were grown from solutions in acetone (analytical reagent) by slow evaporation at 283 K .

Compound (I)

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{ClFNO}$
$M_{r}=367.83$
Triclinic, $P \overline{1}$
$a=9.246$ (3) \AA
$b=10.228$ (4) \AA
$c=11.177$ (4) \AA
$\alpha=80.529(6)^{\circ}$
$\beta=86.335(7)^{\circ}$
$\gamma=65.120$ (6) ${ }^{\circ}$
$V=945.7$ (6) \AA^{3}

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.292 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 2435 reflections
$\theta=2.3-21.2^{\circ}$
$\mu=0.22 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, colourless
$0.50 \times 0.30 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: empirical
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.844, T_{\text {max }}=0.957$
9987 measured reflections

Refinement

Refinement on F^{2}
$R(F)=0.050$
$w R\left(F^{2}\right)=0.118$
$S=1.04$
3788 reflections
311 parameters
All H -atom parameters refined

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$ for (I).

C9-N1-C1-C15	$-3.7(3)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$20.6(3)$
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$145.5(2)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 3$	$1.4(3)$
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-36.3(3)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 7$	$6.1(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$57.3(3)$	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10$	$106.0(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-47.0(2)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 15-\mathrm{C} 16$	$148.67(18)$
$\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$-177.68(16)$		

Table 2
Hydrogen-bonding geometry ($\AA,^{\circ}$) for (I).
$C g 1$ is the centroid of the five-membered $\mathrm{N} 1 / \mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 8 / \mathrm{C} 7$ ring and $C g 2$ is the centroid of the C9-C14 phenyl ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots{ }^{2} 1^{\mathrm{i}}$	$0.90(2)$	$2.50(2)$	$3.358(3)$	$158(2)$
$\mathrm{C} 10-\mathrm{H} 10 \cdots C g 1^{\text {ii }}$	$0.96(2)$	2.93	$3.723(3)$	142
$\mathrm{C} 14-\mathrm{H} 14 \cdots C g 2^{\text {iii }}$	$0.94(2)$	2.90	$3.804(3)$	162
Symmetry codes: (i) $1-x, 2-y, 1-z ;$ (ii) $2-x, 1-y, 1-z ;$ (iii) $1-x, 1-y, 1-z$.				

Compound (II)

Crystal data

$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{FNO}_{2}$
$D_{x}=1.237 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=363.42$
Monoclinic, $P 2_{\circ_{1}} / n$
Mo $K \alpha$ radiation
$a=10.112$ (2) \AA
Cell parameters from 974 reflections
$b=19.073$ (4) \AA
$\theta=2.7-24.3^{\circ}$
$c=11.287$ (3) \AA
$\mu=0.09 \mathrm{~mm}^{-1}$
$\beta=116.348(3)^{\circ}$
$T=293$ (2) K
$V=1950.8(8) \AA^{3}$
Prism, colourless
$Z=4$
$0.40 \times 0.30 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer

3562 independent reflections
2818 reflections with $I>2 \sigma(I)$
φ and ω scans
Absorption correction: multi-scan
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=25.4^{\circ}$
$h=-12 \rightarrow 12$
$T_{\min }=0.887, T_{\max }=0.983$
$k=-22 \rightarrow 21$

14313 measured reflections
$l=-13 \rightarrow 13$

Table 3
Selected torsion angles (${ }^{\circ}$) for (II).

C9-N1-C1-C15	$0.7(2)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$22.9(2)$
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$151.96(15)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 3$	$1.0(2)$
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-29.9(2)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 7$	$1.9(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$53.03(19)$	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10$	$112.95(17)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-46.9(2)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 15-\mathrm{C} 16$	$136.24(16)$
$\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$-178.73(13)$		

Table 4
Hydrogen-bonding geometry ($\AA,^{\circ}$) for (II).
$C g 1$ is the centroid of the five-membered $\mathrm{N} 1 / \mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 8 / \mathrm{C} 7$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O}^{1}{ }^{\mathrm{i}}$	$0.97(2)$	$2.41(2)$	$3.366(2)$	$169(1)$
$\mathrm{C} 14-\mathrm{H} 14 \cdots 1^{\mathrm{ii}}$	$0.96(2)$	$2.48(2)$	$3.428(2)$	$173(1)$
$\mathrm{C} 4-\mathrm{H} 4 B \cdots \mathrm{Cg} 1^{\mathrm{ii}}$	$1.00(2)$	2.69	$3.606(2)$	166
Symmetry codes: (i) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z ;$ (ii) $1-x,-y, 1-z$.				

Table 5
Selected torsion angles (${ }^{\circ}$) for (III).

C9-N1-C1-C15	$-5.4(2)$	C5-C6-C7-C8	$20.6(2)$
O1-C3-C4-C5	$152.69(14)$	C6-C7-C8-C3	$4.3(2)$
C8-C3-C4-C5	$-29.93(19)$	C4-C3-C8-C7	$0.08(19)$
C3-C4-C5-C6	$53.75(17)$	C7-N1-C9-C10	$115.85(15)$
C4-C5-C6-C7	$-46.84(17)$	N1-C1-C15-C16	$137.79(15)$
C9-N1-C7-C8	$-176.85(11)$		

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0502 P)^{2}\right.$
$R(F)=0.041$
$w R\left(F^{2}\right)=0.106$
$S=1.04$
3562 reflections
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
332 parameters
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.15 \mathrm{e}^{-3}{ }^{-3}$
All H-atom parameters refined
$\Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}$

Table 6

Hydrogen-bonding geometry ($\AA \AA^{\circ}$) for (III).
$C g 1$ is the centroid of the five-membered $\mathrm{N} 1 / \mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} / / \mathrm{C} 7$ ring and $C g 2$ is the centroid of the C9-C14 phenyl ring.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{O} 1^{\text {i }}$	0.97 (2)	2.57 (2)	3.533 (3)	173 (1)
$\mathrm{C} 19-\mathrm{H} 19 \cdots \mathrm{O}{ }^{\text {ii }}$	0.93 (2)	2.58 (2)	3.389 (3)	145 (2)
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{Cg} 1^{\mathrm{i}}$	0.99 (2)	2.74	3.723 (3)	172
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{Cg} 2^{\text {iii }}$	0.97 (2)	2.75	3.620 (3)	149

Symmetry codes: (i) $1-x,-y, 1-z$; (ii) $x-1, y, 1+z$; (iii) $-x, 1-y, 2-z$.

Compound (III)

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}$
$M_{r}=315.40$
Triclinic, $P \overline{1}$
$a=9.315$ (5) A
$b=9.793(5) \AA$
$c=11.048$ (6) \AA
$\alpha=81.362(9)^{\circ}$
$\beta=65.691$ (7) ${ }^{\circ}$
$\gamma=77.999(8)^{\circ}$
$V=896.0(8) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.169 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 985 reflections
$\theta=2.4-24.2^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.35 \times 0.30 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min }=0.946, T_{\max }=0.986$
7395 measured reflections
3259 independent reflections
2604 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.014$
$\theta_{\text {max }}=25.4^{\circ}$
$h=-11 \rightarrow 11$
$k=-11 \rightarrow 11$

Refinement
Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0528 P)^{2}\right. \\
& \quad+0.121 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.13 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}
$$

$w R\left(F^{2}\right)=0.104$
$S=1.04$
3259 reflections
301 parameters
All H -atom parameters refined

For all three title compounds, data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997), CAMERON (Watkin et al., 1993) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

The authors thank the Department of Science and Technology, India, for data collection on the CCD facility set up at the IISc, Bangalore, under the IRHPA-DST programme. ARC thanks the IISc for a senior research fellowship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1731). Services for accessing these data are described at the back of the journal.

References

Aakeröy, C. B. (1997). Acta Cryst. B53, 569-586.
Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Bruker (2000). SMART (Version 5.0) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
Choudhury, A. R., Urs, U. K., Guru Row, T. N. \& Nagarajan, K. (2002). J. Mol. Struct. 605, 71-77.
Choudhury, A. R., Urs, U. K., Smith, P. S., Goddard, R., Howard, J. A. K. \& Guru Row, T. N. (2002). J. Mol. Struct. 641, 225-232.
Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.
Desiraju, G. R. (2000). J. Chem. Soc. Dalton Trans. pp. 3745-3751.
Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565-573.
Desiraju, G. R. \& Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Guru Row, T. N. (1999). Coord. Chem. Rev. 183, 81-100.
Hunter, C. A. (1993). Angew. Chem. Int. Ed. Engl. 32, 1584-1586.
Hunter, C. A. (1994). Chem. Soc. Rev. 23, 101-109.
Hunter, C. A., Lawson, K. R., Perkins, J. \& Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651-669.
Nagarajan, K., Talwalker, P. K., Shah, R. K., Mehta, S. R. \& Nayak, G. V. (1985). Indian J. Chem. Sect. B, 24, 98-111.

Nishio, M., Umezawa, Y., Hirota, M. \& Takeuchi, Y. (1995). Tetrahedron, 51, 8665-8701.
Prasanna, M. D. \& Guru Row, T. N. (2000a). Cryst. Eng. 3, 135-154.
Prasanna, M. D. \& Guru Row, T. N. (2000b). CrystEngComm, Article No. 25, pp. 134-140.
Prasanna, M. D. \& Guru Row, T. N. (2000c). J. Mol. Struct. 559, 225261.

Prasanna, M. D. \& Guru Row, T. N. (2001). J. Mol. Struct. 562, 55-61.
Remers, W. A., Roth, R. H. \& Weiss, M. J. (1971). J. Med. Chem. 14, 860864.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.
Takahashi, H., Tsuboyama, S., Umezawa, Y., Honda, K. \& Nishio, M. (2000). Tetrahedron, 56, 6185-6191.
Umezawa, Y., Tsuboyama, S., Takahashi, H., Uzawa, J. \& Nishio, M. (1999). Tetrahedron, 55, 10047-10056.
Varghese, B., Srinivasan, S., Padmanavan, S. \& Ramadas, S. R. (1986). Acta Cryst. C42, 1549-1551.
Watkin, D. M., Pearce, L. \& Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.
Weiss, M. J., Allen, G. R., Gibbs, G. J., Pidacks, C., Poletto, J. \& Remers, W. A. (1968). Topics in Heterocyclic Chemistry, edited by R. N. Castle, pp. 195205. New York: Wiley Interscience.

